打开APP,操作学习更流畅
同学们在学习数学的过程中,要学会归纳和总结在课本上学过的知识点,能够方便同学们进行复习。掌门学堂小编为大家带来了一篇高一数学必修一知识点梳理的文章,其中介绍了课本上的基础知识点和试卷上的考点,想要了解的同学赶快跟随小编一起来看看吧。
高一数学必修一知识点梳理
集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合。
集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。注意:常用数集及其记法:XKb1.Com
非负整数集(即自然数集)记作:N
正整数集:N*或N+
整数集:Z
有理数集:Q
实数集:R
列举法:{a,b,c……}
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}
语言描述法:例:{不是直角三角形的三角形}
Venn图:
集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}
“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。AÍA②真子集:如果AÍB,且A¹B那就说集合A是集合B的真子集,记作AB(或BA)③如果AÍB,BÍC,那么AÍC④如果AÍB同时BÍA那么A=B
不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).
指数与指数幂的运算根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).
当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。注意:当是奇数时,当是偶数时,
分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
以上就是由掌门学堂小编为同学们带来的高一数学必修一知识点梳理的内容,希望能够帮助到大家。同学们除了在课上认真听讲外,还要做好课堂笔记,总结老师讲的重点和强调的细节,这样能够帮助同学们高效学习和提高成绩。
1对1
测评服务