打开APP,操作学习更流畅
函数是中学阶段的核心知识,也是较难掌握的重点难点,其实函数也是整个现代数学的基石,要是函数学不好,那么学习现代数学也只能是一纸空谈,该怎样学好函数呢?下面由掌门学堂小编为大家带来初二数学函数知识点的分享,一起来看看吧。
初二数学函数知识点
变量和常量
在一个变化过程中,数值发生变化的量,我们称之为变量,而数值始终保持不变的量,我们称之为常量。
函数
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
自变量取值范围的确定方法
自变量的取值范围必须使解析式有意义。
当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的所有实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的所有实数。
自变量的取值范围必须使实际问题有意义。
函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);
第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
正比例函数
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.
正比例函数图象和性质
一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点和(1,k)的直线.我们称它为直线y=kx.当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
解析式:y=kx(k是常数,k≠0)
必过点:(0,0)、(1,k)
走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限
增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小
倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴
正比例函数解析式的确定——待定系数法
设出含有待定系数的函数解析式y=kx(k≠0)
把已知条件(一个点的坐标)代入解析式,得到关于k的一元一次方程
将k的值代回解析式
以上是由掌门学堂小编为大家分享的初二数学函数知识点,希望能给大家带来帮助。函数是数学的一个重要部分,它是代数和几何的结合,它展示了两个变量之间的代数关系,同时又可以从图像直观的观察,随着学习的深入,会有指数函数、对数函数、三角函数以及复合函数等等,所以学好函数对数学的学习很重要。
1对1
测评服务