掌门1对1

掌门1对1

打开APP,操作学习更流畅

数学必修4知识点总结

2021-08-02 浏览量: 8

数学的重要性对于学生来说占据着学习中的一大半部分,但是有很多学生对于数学的学习总是有一种不开窍的情况,所以导致每次在数学考试的时候总是分数不理想,那么数学必修四知识点总结有哪些?下面掌门学堂小编和大家分享一下。

数学必修4知识点总结

两个平面的位置关系:

两个平面互相平行的定义:空间两平面没有公共点。

两个平面的位置关系:

两个平面平行——没有公共点;两个平面相交——有一条公共直线。

a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]。

二面角的棱:这一条直线叫做二面角的棱。

二面角的面:这两个半平面叫做二面角的面。

二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

直二面角:平面角是直角的二面角叫做直二面角。

两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥。

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)。

棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。

棱锥的性质:

侧棱交于一点。侧面都是三角形

平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方。

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

多个特殊的直角三角形

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

以上是掌门学堂小编和大家分享关于数学必修4知识点总结的相关内容可见,在数学的学习过程中知识量是非常大的,所以对于数学的学习,学生可以掌握一个良好的学习技巧,这样可以轻松的学习,而且在分数中也可以取得良好的成绩。

名师在线1对1,针对性辅导!0元试听! 立即预约>
各年级全科辅导资料 名师精编试卷 免费领取>
掌门代言人
9.9元领取1对1测评服务